

HYOSUNG CHEMICAL

POKETONE In Gear Application

Global Warming Potential

- * PA6 6.70
- * PA66 6.40
- * **PC** 3.40
- * **POM** 3.20
- * ABS 3.10
- ** **PK** 3.08 (kg CO₂ eq)
- * Other ETP data is based upon the Eco-profiles data from **www.plasticseurope.org**
- ** PK Data is based upon Korea LCI database and Ecoinvent database.

Non Toxic High Efficiency

Acrylate Free
Melamine Free
Bisphenol A Free
Formaldehyde Free
Lead/ Chrome/ Free
Phthalate Free

Further Information www.poketone.com

Overview

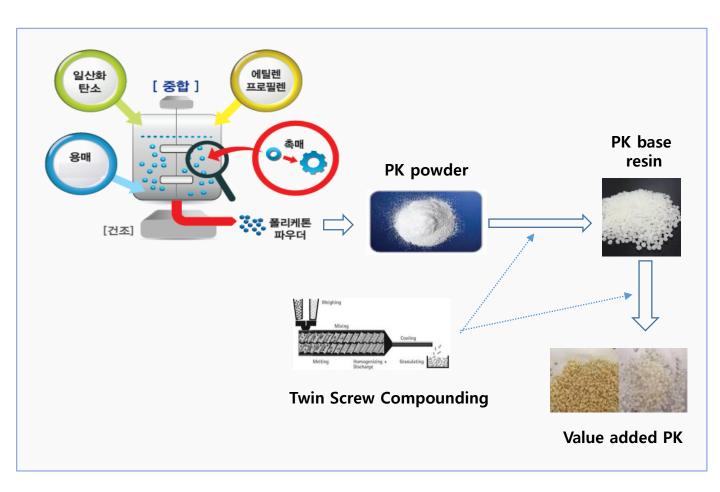
HYOSUNG POKETONE is a Semi-crystalline aliphatic polyketone resin, polymerized with carbon monoxide(CO) and C2, C3 olefins. This POKETONE is categorized as engineering plastics, and used in a broad range of application with wear resistance, chemical protective, eco-friendly and low VOCs and balanced stiffness and toughness required resion.

$$n CO + (n-m)CH_2 = CH_2 + m CH_2 = CH$$
Carbon Ethylene(C2) Propylene(C3) $m < 6.5$ atom% CH₃

$$Catalyst, pressure$$

$$+ CH_2 CH_2 CH_2 CH_2 CH_3 CH_3$$

Poketone (Aliphatic Polyketone) Melting point 220°C, density 1.24g/cm³

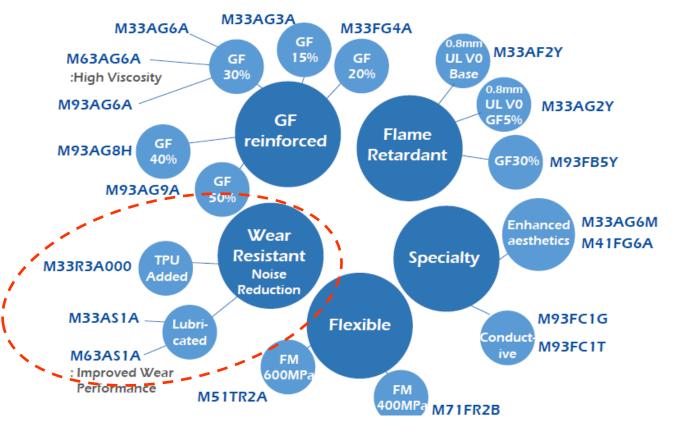

Table of contents

- 1. Introduction
- 2. Eco-Friendliness and Harmlessness of PK Base Resin
- 3. Key Mechanical Properties of PK Base Resin
- 4. Wear Resistant PK Portfolio
- 5. When to USE WEAR RESISTANT PK
- 6. Wear Performance Comparison

1. Introduction - Production of PK pellet

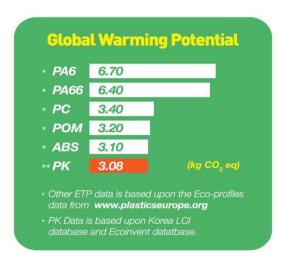
Polymerized PK resin has the form of powder. PK base resin pellet is made through twin screw compounding using optimized process conditions.

For value adding such as wear resistant, filler reinforcing, flame retardant an additional compounding process is applied at the PK base resin with an appropriate additives/fillers under optimized process conditions


Basically POKETONE is provided as four major colors: NP, BK, GY, WH. But we support RED, BLUE, YELLOW, GREEN and ORANGE coloring according to customer's requirements.

1. Introduction - Base and Compound Portfolio

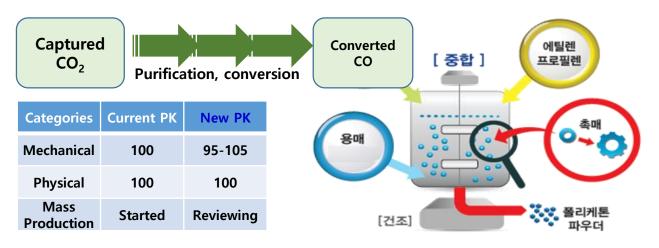
We have 7 PK base resin portfolio. For wear resistant, we recommend High viscosity PK like M630, M640 and M730.


For more wear resistant performances than PK base, we recommend lubricated PK resin

Wear Resistant Compound

2. Eco-Friendliness and Harmlessness of PK Base Resin

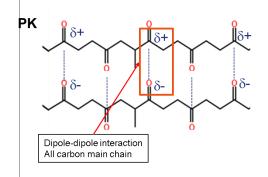
HYOSUNG POKETONE has inherently lower CO₂ emission compared with other engineering plastics

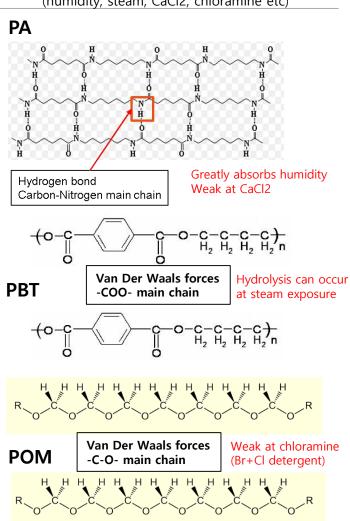


kg CO2 eq = amount of emitted CO2 per production of given resin 1kg

HYOSUNG POKETONE has many eco-related and health-related Certificates as NSF, KTW, EU 10/2011, USP 65 and ISO10993.

Hyosung Chemical has a future plan to produce Poketone using recycled CO₂ gas. Named as NEW PK, its mechanical & physical properties is verified the same as that for current PK.

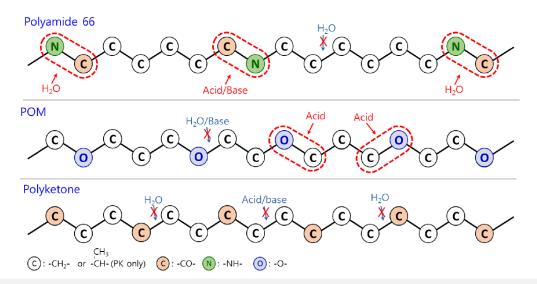



3. Chemical Structure Comparison

Poketone shows high elongation, impact resistance and good chemical resistances over wide range chemicals compared with other engineering plastics.

It is related to its unique chemical structures: <u>all carbon main chain + dipole</u> interaction

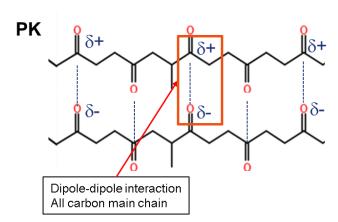
	POKETONE	Other Engineering Plastics
Main chain	All Carbon atom	O, N is periodically inserted
Secondary bonding	Dipole-dipole moment	PA: hydrogen bonding PBT, POM: Wan Der Waals
Character -istics	High elongation & impact Generally good chemical resistance	High stiffness Vulnerable to humidity and several chemicals (humidity, steam, CaCl2, chloramine etc)



3. Chemical Resistance: PK vs. other Engineering Plastics

PK is the only engineering plastic with all carbon main-chained back-bone. It gives generally good chemical resistances compared with other engineering plastics which contain O, N atoms in their back bone.

- PA: Amide Group (-NH-CO-) is weak to Water/Acid/Alkaline
- POM: Etter (R-O-R') group is degraded by acid
- PK: Main Chain is composed with only C-C, so stable to Water/Acid/Alkaline



			A	Amorphou	s					
	PK	PA66	PA12	POM	PBT	PPS	PVDF	PPO	PSU	PC
Hydrocarbons										
Aliphatic	0	0	0	0	0	0	0	•	•	•
Aromatic	0	0	0	0	0	0	0	•	•	•
Halogenated	0	0		0		0	0	•	•	•
Ketones	0	0	0	0	0	0		•	•	•
Esters/Ethers	0	0	0	0	0	0	0	•	•	•
Aldehydes	0	•	•	0	0	0	0	•	•	•
Aqueous										
Water	0	•	0	0	•	0	0	0	0	0
Weak Acids	0	•	•	•	•	0	0	0	0	0
Weak Bases	0	•	•	0	•	0	•	0	•	0
Strong Acids	•	•	•	•	•	•	0	0	•	0
Strong Bases	•	•	•	0	•	•	•	•	•	•

3. Key Mechanical Properties Comparison: PK vs. other Enpla.

PK's secondary bonding is dipole-dipole interaction. This givess balanced mechanical properties between stiffness and toughness.

Compared with other engineering plastics, PK's position lies in toughness orientated properties.

Items	Unit	PK M330	PA6	PA66	PBT	POM
Density	g/cm³	1.24	1.14	1.14	1.30	1.41
Melting Point	℃	222	220	260	220	160
Notched Charpy	kJ/m²	9.0	5.2	4.6	5.0	6.5
Tensile Strength	MPa	60	80	80	55	65
Elongation at Break	%	>250	<100	<80	16	35
Flexural Modulus	MPa	1,550	2,600	2,900	2,400	2,500

PK					
Young's Mo	dulus				
Low PC	PBT	POM CO	POM HO	PA6	PA66 High

Low PBT PA6 PA66

POM

4. Wear Resistant PK Portfolio

Hyosung POKETONE provides 6 wear resistant compounding grades.

By adding optimized additives, POKETONE wear resistant grades give best balance of wear properties and toughness with eco-friendliness and human life sustainability.

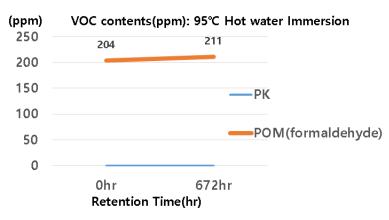
Cat		Wear Resistant								
Grad	e name		М33АТ2Е	M33AG2T	M63AM2A	M33AR3B (M33R3A000)	M33AS1A	M63AS1B		
Physical Properties	Test Method	Unit								
Density	ASTM D792	g/cm³	1.29	1.35	1.31	1.23	1.24	1.24		
Filler content(GF, MF)	ASTM D5630	wt%	0	10	10	-	-	-		
Mechanical Properties	Test Method	Unit								
Tensile Strength	ASTM D638	MPa	50	68	59	45	60	55		
Elongation at Break	ASTM D638	%	39	8	77	150	200	135		
Flexural Strength	ASTM D790	MPa	52	102	71	42	57	53		
Flexural Modulus	ASTM D790	MPa	1530	3150	2400	1100	1500	1500		
Notched izod	ASTM D256	J/m	87	132	130	200	76	165		
Thermal Properties	Test Method	Unit								
Melting Temperature	ASTM D3418	℃	222	222	222	222	222	222		
MFR 240°C, 2.16kg	ASTM D1238	g/10min	20	17	0.2	50	49	6		
Grade Ch	aracteristics		PTFE/Si	PTFE/Si + GF	High Viscosity PK + MF	Si/TPU	Si	High Viscosity PK + Si		
Main Application			Frame for Protective Glasses, caster wheel	Sucker rod guide	Carrierplate for Automotive Ball Bearing Joint	Door closer for Refrigerator	ATM Gear	Conveyor belt Sucker rod centralizer		
Device P										

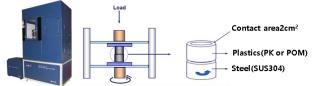
5. When to USE WEAR RESISTANT PK

We recommend WEAR RESISTANT POKETONE when the parts will be subject to:

- wear parts which is directly exposed/near to human body, so harmlessness is especially required
- · environment with humidity at RT, and dimensional stability is needed.
- · environment with both wear, and impact/chemical resistance.
- · environment with both wear and noise reduction.
- · lubrication such as grease is avoided

We do not recommend WEAR RESISTANT POKETONE when the parts will be subject to:


- · long term heat or heat + humidity exposure above > 90°C
- discoloring issue is critical(we suggest black grade)
- · under strong acid or base
- · current material is super engineering plastic(PEEK, PSU), and needed the same stiffness/strength & thermal resistance.

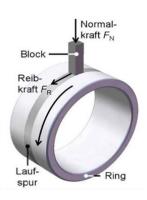

6. Wear Performance Comparison – JIS K7218

High Viscosity Poketone - as an Alternative for high Performance homo-POM

Need to find an alternative for homo-POM due to formaldehyde issue, or its low service temperature? High Viscosity PK M630/M640/M730 and mineral filled M63AM2A are good Candidates.

Properties		unit	M630	M63AM2A	M640	M730	High Performance Homo-POM	comments
Filler	content	wt%	-	10	-	-	-	Mineral filler
Resin Mo	elting Point	°C	220	220	230	220	180	-
de	nsity	g/cm ³	1.24	1.31	1.24	1.24	1.42	
MFR(240°C, 2.16kg)		g/10min	6.0	1.9	6.0(250°C)	2.0	2.0(190°C)	
	Tensile Str.	MPa	58	59	64	58	72	
	Elong. at break	%	>200	77	>200	>250	31	
Mechanical properties	Flexural Str.	MPa	57	71	58	48	90	-
(ISO)	Flexural Mod.	GPa	1.3	2.5	1.5	1.2	2.8	
	N. Charpy	kJ/m²	15.0	13.2	16.0	19.0	13.9	
ASTM D695 compression	Compressive Strength	MPa	84	77	114	96	89	-
Ring on Ring vs. SUS 304	Wear amount	1/100g	0.66	0.06	0.06	0.04	1.32	80N,100rpm, 3km

Ring on Ring tester(JIS K 7218)


Compression Tester(ASTM D695)

6. Wear Performance Comparison - ASTM G-137

High Viscosity Poketone - as an Alternative for high Performance homo-POM

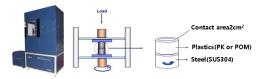
Under high temperature wear application, PK M630 shows steady wear resistances due to its higher melting point, whereas POM melts under high load/temp and loses its wear resistance.

PK	PK M630/PA66			POM/PA66			Test condition			
Block	Ring	Wear rate (um/h)	Block	Ring	Wear rate (um/h)	load (MPa)	Velocity	Temp. (℃)		
		0.5			2.0	5				
		1.8			3.1	10				
		2.0			4.0	15	0.75 /2	130		
		3.1		PA66	14.0	20	0.7m/s (26.7 rpm)			
		21.0			53.0	25				
DV		86.0			melting	30				
PK M630	PA66	-	POM		melting	35				
IVIOSU		5			6		0.7m/s	140		
		10			30			150		
		14			42	15		160		
		16			3,202	15	(26.7 rpm)	170		
		19			melting			180		
		21			melting			190		

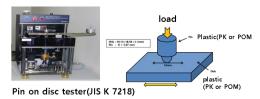
ASTM G-137 Block on Ring

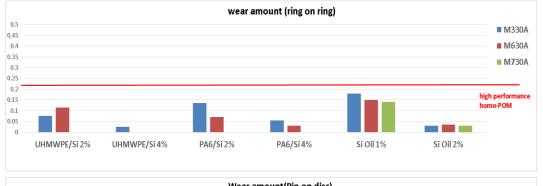
High Viscosity Poketone can be good candidate on the application with high temperature treatment(plating, washing etc) and high humidity on which POM or PA6, PA66 cannot stand wear resistant due to its lower service temperature or high water absorption.

Ball Bearing Joint Under high temp. plating

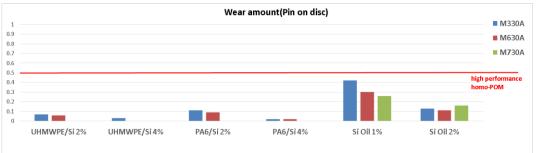


6. Wear Performance Comparison – JIS K7218


Silicon Lubricated Poketone - Excellent wear resistant material


We also provide Silicon lubricated Polyketone with various base resin - M330, M630, M730 and various type of Silicon additives.

Materials		Commercialized	•	n ring wear rpm, 3km(2hr)	Pin on disc wear 100N, 3Hz, 0.65km(6hr)	
		grade	Frictional coeff.			Wear amount (1/100g)
High Perf	ormance Homo-POM	-	0.07	0.23	0.30	0.50
M330A	UHMWPE/Si M/B 2%	yes(M33AS1A/B)	0.11	0.08	0.12	0.07
M630A	UNIVIVE E/SI IVI/D 2%	yes(M63AS1A/B)	0.11	0.12	0.13	0.06
M330A	UHMWPE/Si M/B 4%	No	0.05	0.03	0.07	0.03
M330A	PA6/Si M/B 2%	Not currently	0.13	0.14	0.13	0.11
M630A	PAO/SI W/D 270	Not currently	0.05	0.07	0.12	0.09
M330A	PA6/Si M/B 4%	No	0.10	0.06	0.09	0.02
M630A	PA0/31 W/D 476	No	0.10	0.03	0.08	0.02
M330A		No	0.17	0.18	0.21	0.42
M630A	Si Oil 1%	No	0.09	0.15	0.22	0.3
M730A		No	0.06	0.14	0.20	0.26
M330A		No	0.06	0.03	0.08	0.13
M630A	Si Oi 2%	No	0.05	0.04	0.06	0.11
M730A		No	0.05	0.03	0.07	0.16



Ring on Ring tester(JIS K 7218)

Rotational wear

Reciprocated wear

· Excellent Wear Resistance · Low Noise · Low abrasion loss (no particle) · Excellent chemical resistance

CONTACT US

Republic of Korea

+82 2 2146 5583, jdm@hyosung.com / +82 2 2146 5589, jssooho@hyosung.com

China

+86 021 62250312 (ext.8030), <u>yikim77@hyosung.com</u> / +82 2 2146 5571, <u>shin611@hyosung.com</u>

Europe

+82 2 2146 5591, lovetoken@hyosung.com / +82 2 2146 5574, lhjkim13@hyosung.com

America

+82 2 2146 5572, mkjung@hyosung.com

Asia

+82 2 2146 5551, jaejung@Hyosung.com

Further Information www.poketone.com

+Note: The data contained in this publication are based on our current internal knowledge and experience, these do not imply any guarantee of certain properties. Most images are from googling image researching, which is considered as public open information.